Defensive Investment in Municipal Water Hardness Reduction

Naima Farah & Gregory Torell

AgriLife Research Texas A&M University

2018 Winter Conference at ERG

Dec 22, 2018

Background

Water hardness

• High concentration of Ca^{++} and Mg^{++}

Damages from water hardness

 ↓ efficacy of cleaning products/ detergents, ↓ service life of house appliances, scaling, distaste of water

Prevention

- Households: softening salts, additives, other products. Process: ion exchange
- Desalination plants: reverse osmosis

Motivation

What?

 Measuring Willingness to Pay (WTP) of Households to reduce water hardness caused damages.

Why?

- Private softening \rightarrow excess salt in the flow back water \rightarrow effects on the aquatic environment \rightarrow negative externality
- HHs' WTP help decide central water desalination+ softening cost and volume
- Public provisioning of private good

Motivation

How?

 Using water softening purchase and total dissolved solids (TDS) data, estimate effects of TDS on softening purchase.

What we find?

- WTP ↑ as TDS ↑
- \bullet For \geqslant 500 ppm in water hardness/ TDS \rightarrow HHs WTP is \$7.5/ month.

Question

Research Question

How municipal water hardness affects households' (HH) willingness to pay (WTP) to reduce damages?

 Damages= Hardness caused damages (other than perceived/ true health risk)

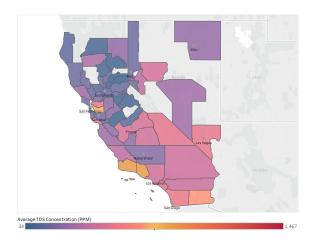


Figure 1: Average TDS Measures by County in Nevada and California 2006–2012 Source: Nevada Division of Environmental Protection – Drinking Water Watch California Water Boards – Drinking Water Watch

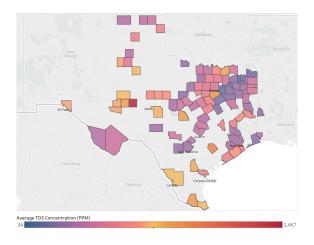


Figure 2: Average TDS Measures by County in Texas 2006–2012 Source: Nevada Division of Environmental Protection – Drinking Water Watch California Water Boards – Drinking Water Watch

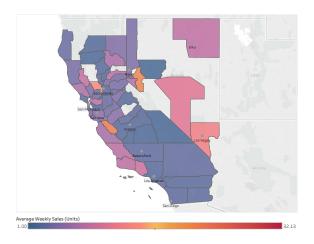


Figure 3: Average Weekly Unit Sales by County in California and Nevada 2006–2012 Source: Nielsen Retail Scanner Database

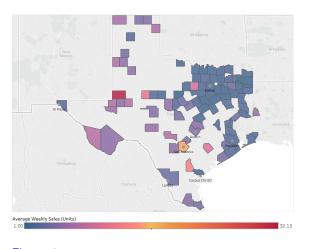


Figure 4: Average Weekly Unit Sales by County in Texas 2006–2012 Source: Nielsen Retail Scanner Database

Theory Model Summary

Random utility model

$$u_{ijc} = \beta_i x_{jc} + \alpha_i p_{jc} + \lambda_c + \varepsilon_{ijc}, \qquad (1)$$

here, i= individual, j= softener product, c= county x_{jc} = Reduction in HH damages, p_{jc} = Price of softening product, λ_c = Time invariant fixed effects

Market share of product j in county c:

$$s_{jc} = \frac{\exp(\beta x_{jc} + \alpha p_{jc} + \lambda_c)}{\sum_{k=0}^{J} \exp(\beta x_{kc} + \alpha p_{kc} + \lambda_c)}$$

• Utility is zero if water softening product not bought, i.e. $x_{0c} = 0$ if j = 0

$$\ln s_{jc} - \ln s_{0c} = \beta x_{jc} + \alpha p_{jc} + \lambda_c$$

• Marginal WTP for one unit of TDS reduction: $-\beta/\alpha$

Empirical Model and Identification

Estimated Model

$$\ln s_{ijct} - \ln s_{0ct} = \beta_1 x_{jct} + \alpha_1 \widehat{p}_{jct} + \beta_2 y_{ct} + \lambda_j + \delta_t + \varepsilon_{ijct}$$
 (2)

Here, j=products, c= counties, t=time s_{ijct} = share of HH purchasing softeners, s_{0ct} = share of HH not purchasing softeners

 y_{ct} =income

- Softener product sales to measure LHS
- TDS to measure x_{jct} i.e., water hardness reduction

Empirical Model and Identification

- Price and softener demand: reverse causality
- Instruments for softener price: Chemical Manufacturers' Income Z_t and EPA's Non-Attainment Index NA_{ct}
 - ▶ Instrument story: Corr(Chemical Manufacturers' Income Z_t , p_{jc}) >0
 - ► Corr(EPA Nonattainment index NA_{ct} , p_{jc}) \neq 0, non-attained area facilitates softener production
 - ▶ Not weak instrument: $corr(p_{ic}, Z_t) \neq 0$, $corr(p_{ic}, NA_{ct}) \neq 0$
 - ▶ Validity: $corr(\varepsilon_{ijc}, Z_t) = 0$, $corr(\varepsilon_{ijc}, NA_{ct}) = 0$

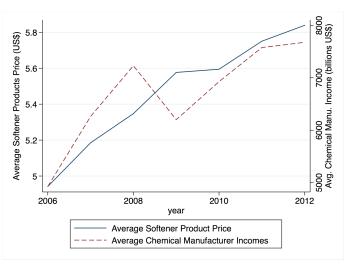


Figure 5: Average Price and Average Net US Chemical Manufacturers' Income , 2006-2012

Source: Nielsen Scanner Data and US Census Quarterly Financial report

Data Source

- TDS: State Drinking Water Watch (DWW)
- Softener Sales: Nielsen
- County income: BLS
- Household statistics: Census Bureau
- Chemical Manufacturer Income: Census Bureau
- NAAQS index: EPA
- Weekly store-product level panel. 2006-2012
- 158 counties. 50 CA, 99 TX, 9 NV.

Results

Table 1: IV Regression Results: Households' WTP to reduce Water Hardness 2006-2012

	(1) IV-FE	(2) IV-FE
Price of Softening Products (US\$)	-0.0922** (0.0428)	-0.0912** (0.0445)
Damages Avoided (TDS)	0.00135*** (0.000256)	0.00137*** (0.000271)
County Wages (Thousand US\$)	0.000306 (0.00266)	0.00676 (0.00532)
Constant	-12.38*** (0.180)	-12.47*** (0.226)
MWTP	0.0147*** (0.0054772)	0.0150 (0.0062808)
Month FE	No	Yes
Observations	982,378	982,378
No. Groups	153	153
No. Clusters	153	153
First-stage F statistic	111.99	90.74

Notes: Dependent variable: ln(HH) share purchasing softeners)- ln(HH) share not purchasing softeners). Standard Errors (in parentheses) are clustered by counties. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.

Robustness Checks

Table 2: Robustness Checks: Households' WTP to reduce Water Hardness 2006-2012, Winter Weather Instrumenting Price

	(1)	(2)
	IV-Winter Weather	IV- Drought Index
Price of Softening Products (US\$)	-0.0962**	-0.0848*
	(0.0457)	(0.0449)
Damages Avoided (TDS)	0.00139***	0.00137***
	(0.000269)	(0.000270)
County Wages (Thousand US\$)	0.00682	0.00692
, ,	(0.00567)	(0.00559)
Drought Index	No	Yes
MWTP	0.0144**	0.0161**
	(0.0058568)	(0.0074468)
Month FE	Yes	Yes
Observations	955,734	982,378
No. Groups	153	153
No. Clusters	153	153

Notes: Dependent variable: In(HH share purchasing softeners)- In(HH share not purchasing softeners). Standard Errors (in parentheses) are clustered by counties. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.

Results Summary

• IV regression results: High TDS $\to \uparrow$ softener sales, High Price $\to \downarrow$ softener sales

Using MWTP= $-\beta/\alpha$:

- ullet Average HH's Monthly WTP \$7.5 when TDS > 500 ppm
- Average HH's Annual WTP \$12 when TDS > 500 ppm
- ullet County level aggregate \$1.2 million WTP when TDS > 500 ppm

WTP Estimates

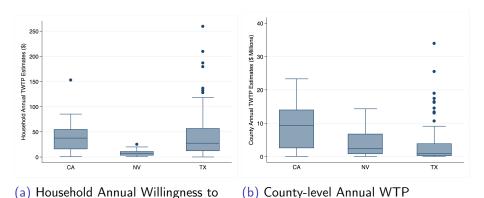


Figure 6: Total Willingness to Pay Estimates

Estimates, 2006-2012

Pay Estimates, 2006-2012

Conclusion

- ullet High TDS o high WTP
- \bullet HH WTP \to water utilities decision on water desalination plants and costs
- Salt management: internalize the externality

Thank you. Questions? naima.farah@ag.tamu.edu